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In the context of JWKB (Jeffreys, Wentzel, Kramers, and Brillouin) approximation, we
use inverse scattering theory to modify the forbidden region by introducing an arbitrary
term in the analytical expression of the potentialν(r ) in the case of He-Na elastic
scattering given as an example.

KEY WORDS: JWKB; phase shift; scattering.

1. INTRODUCTION

Inverse problems are actively studied in the areas of pattern recognition,
identification, and optimization theory.

Some inverse problems can also be formulated in the framework of scattering
theory. This approach is beginning to play an ever-increasing role in forming nu-
merical algorithms, especially when dealing with complicated problems of physics
in which it is difficult to estimate a priori the effects of various factors on the solution
of the problem.

The deduction of the interaction from structural data obtained from scatter-
ing experiments has been the object of much attention. Important results in this
direction have been achieved (Bellisent-Funelet al., 1989; Dharma-Wardana and
Aers, 1986; Dzugutovet al., 1988; Kahlet al., 1996; Kahl and Kristufek, 1994;
Levesqueet al., 1985; Reattoet al., 1986) in the physics of liquid and collisions.

We try to identify the potential with a known structure in terms of information
provided by some elements of the data (functionals) regarding the process and to
analyze and control the process.

The main objective of this work is to show how the unreachable part of
the potentialν2(r ) in the work of Cao and Zerarka (1985) may be avoided by
including an auxiliary term in the potentialν(r ) = ν1(r )+ ν2(r ), in which the first
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term represents the Van der Waals attractive interaction and the second one is
repulsive and describes the exchange effect of the atomic electrons.

The partial phase shiftδ1
a(l ) corresponding to the arbitrary potential is known,

but the total partial phase shiftδ(I ) for ν(r ) remains unchanged and can also be
calculated analytically in terms ofδ1

a(l ), ν1(r ), and the auxiliary potential. An
analytical expression ofν2(r ) is obtained by a similar way as in Cao and Zerarka.
For the sake of clarity, the paper is organized as follows. Section 2 is devoted to
a summary of those aspects of semiclassical method that are directly pertinent to
the analytical expression of the phase shift. In Section 3, the potentialν2(r ) is
investigated by using the inverse scattering theory. In Section 4, an application
for the case of He-Na elastic scattering is presented and numerical results and
conclusion are presented in Section 5.

2. PHASE SHIFT

The JWKB (Froman, 1965) phase shift may be obtained by using the radial
part of the Schr¨odinger equation

1ψ + K 2
1(r )ψ = 2µν2(r )ψ (1)

where

K 2
1(r ) = 2µ[E0− l (l + 1)/r 2− ν1(r )] (2)

in which E0 andµ represent, respectively, the incident energy and the reduced
mass, andh has been set equal to unity.

We have calculated the potentialν2(r ) by the JWKB inverse scattering theory
and we have shown that the inner region (r < 7.80) is nonaccessible; it does
correspond to the forbidden one. In order to solve these difficulties, it is always
possible to impose an auxiliary potentialνa(r ), which respects the conditions of
validity of JWKB approximation for a fixed energy. The simplest idea is to modify
the potentialν(r ) in such a way that it preserves the same form. We can rewrite the
potentialν(r ) by introducing an arbitraryνa(r ) leading to a new form ofν(r ) as

ν(r ) = νa(r )+ V2(r ) (3)

where

V2(r ) = ν1(r )+ ν2(r )− νa(r ) (4)

A transformation is now possible if we replaceν1(r ) by νa(r ) andν2(r ) by V2(r ).
The Schr¨odinger equation then takes the form

1ψ + K 2
1a(r )ψ = 2µV2(r )ψ (5)

K 2
1a(r ) = 2µ[E0− l (l + 1)/r 2− νa(r )] (6)
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A similar way as in Cao and Zerarka, we write the phase shiftδ(l ) by using the
specific conditions of validity of the JWKB approach:

δ(l ) = δ1
a(l )− µ

∫ ∞
r0

dr ′
V2(r ′)
K1a(r ′)

(7)

wherer0 is the classical turning point, defined byK 2
1a(r ) = 0.

3. DETERMINATION OF POTENTIAL ν2(r )

In this section we derive an analytical form of potentialν2(r ) by the inver-
sion process in which the use of Abel transformation is necessary (Cameron, and
McKee, 1983; Cao, 1978; Miller, 1969). The potentialν2(r ) will be expressed
by an integral which may be numerically calculated in the frame of the elastic
scattering. However the potentialν2(r ) is directly extracted fromV2(r ).

We now define the following practical quantities:

pa(E0, l ) = −
√

2/µ
[
δ(l )− δ1

a(l )
]

(8)

D(E0, Y) = V2(r )
dr2

dY2
(9)

where

Y2 = r 2(E0− νa(r )) (10)

The relation (6) may be transformed as

K1a(r ) =
√

2µ
1

r

[
Y2(r )− Y2(r0)

]1/2
(11)

From (8) the relation (7) becomes

Pa(E0, l ) =
∫ ∞

Y0

dY
D(E0, Y)Y

(Y2− Y2
0 )1/2

(12)

To extract the functionD(E0, Y), we need thus the Abel transformation. From
(12), we have

D(E0, Y) = − 2

π

∫ ∞
Y

dY0(Y2
0 − Y2)−1/2 dPa(E0, l )

DY0
(13)
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then, the potentialν2(r ) becomes

ν2(r ) = D(E0, Y)

[
E0− νa(r )− r

2

dνa(r )

dr

]
− ν1(r )+ νa(r ) (14)

4. APPLICATION TO THE CASE OF He-Na ELASTIC SCATTERING

The case of elastic scattering between He and alkaline atoms like Na may be
numerically tested by using the above results.

For those scattering types, the potentialν1(r ) is assumed to be known a
priori, and equal to−c6 · r−6 in which c6 represents the van der Waals constant
and has been computed by Mahan (1969), for different molecular states, whereas
the potentialν2(r ) is controvertible and it is then proposed that it would take the
form

ν2(r ) = drβe−αr

where d = 0.015; α = 0.94; β = 2.20. These values can be found in Roueff
(1974). In addition, the arbitrary potentialνa(r ) is chosen as:

νa(r ) = ar−2

a being a positive or negative constant. Note that, we have taken into account this
choice, since we have at our disposal an analytical expression of phase shiftδ1

a(l )
corresponding to this potential (Cao and Tran, 1976) given by

δ1
a(l ) = π

4

[
(2l + 1)2−

√
(2l + 1)2+ 8µa

]
(15)

The calculations of the integralD(E0, Y) allows us to suggest immediately two
important criteria on the choice of the parametera in the potentialνa(r ).

i) The forbidden region must be sufficiently reduced.
ii) The condition of validity of the JWKB approximation must be always

verified.

Note that for the one fixed parametera, we have to compute the integralD(E0, Y)
via eq. (12) for some values of the turning point.

5. RESULTS AND DISCUSSION

The discrete data ofδ(I ) allows us to use the interpolation algorithm, specified
on some values of orbital quantumI , based on Newton interpolation polynomials.
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Table I. Representation of the Classical Turning Pointsr0

Defined byK1a = 0 and the IntegralD(E0, Y) in Terms of
the Orbital QuantumI , for the Casea = 0.86× 10−3.

I r 0 D(E0, Y)

20 4.00 −0.807
25 6.18 0.523
30 7.33 0.415
35 8.58 0.192
40 9.78 0.085

The results of the integralD(E0, Y) and the turning pointr0 are listed in Tables I–III.
The integral is implemented numerically with a standard Simpson integration, by
using a Fortran library routine. Results on Figs. 1–3 indicate that the numerical
solutions of the potentialν2(r ) are in good agreement with the analytical solutions
Note also that all curves are plotted by exponential interpolation by using the best
fit method for determinig trends in data. As we have already mentioned in Section
1 the particular interest is to reduce the forbidden region by JWKB method. This
is mainly due to the fact thatK1a(r ) becomes imaginary. We have reconstructed
the potential with the values of the parametera, suitably chosen. For example, we
see in Fig. 1 that both potentials are similar and the small approach distance is
r = 4.91. However, in Figs. 2 and 3 the curves are similar within a certain range.
From a general point of view, this is justified, since we have supposed that from
a certain distance the Exp(±i S(r )) terms give a negligible contribution (Cao and
Zerarka, 1985). The valuesr = 2.76 andr = 2.45 are the small approach distances
in the Figs. 2 and 3, respectively.

We have also presented the potentialν2(r ) described in Cao and Zerarka
(1985) in an attempt to compare the approach distances with those investigated in
this work. According to the previous result, the valuer = 7.8 is the small approach

Table II. Representation of the Classical Turning Pointsr0

Defined byK1a = 0 and the IntegralD(E0, Y) in Terms of
the Orbital QuantumI , for the Casea = −0.1.

I r 0 D(E0, Y)

36 2.76 −126
37 3.45 −24.72
38 4.04 −6.373
40 5.05 1.745
45 7.10 1.707
50 8.84 1.073
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Table III. Representation of the Classical Turning Points
r0 Defined byK1a = 0 and the IntegralD(E0, Y) in Terms
of the Orbital QuantumI , for the Casea = −0.5× 10−3.

I r 0 D(E0, Y)

10 2.45 −288.2
15 3.68 −18.64
20 4.00 −1.143
25 6.11 0.542
30 7.31 0.446
35 8.52 0.219
40 9.73 0.098

Fig. 1. Representation of potentialsν2(r ): full curve, original formula; short broken curve
(square), Cao and Zerarka (1985); long broken curve (circle), present result. case:a = 0.86×
10−3.
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Fig. 2. Representation of potentialsν2(r ): full curve, original formula; short broken curve
(square), Cao and Zerarka (1985); long broken curve (circle), present result. case:a = −0.1.

distance. It now appears clearly that, from these results, the approach distances
found by introducing the auxiliary potentialνa(r ) may be considered as reference
on the choice of the parametera.

We have therefore shown that for each parametera the corresponding ap-
proach distance permits to reduce the inaccessible part imposed by the JWKB
method. We may conclude that it has been possible, using the inverse scattering
theory and introducing an arbitrary potential, to reconstruct the potentialν2(r ) and
to restrict the forbidden interval. We hope that this technique can be employed for
a few other parameters or auxiliary potentials. However, the principal difficulty
arises from numerical calculations.
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Fig. 3. Representation of potentialsν2(r ): full curve, original formula; short broken
curve (square), Cao and Zerarka (1985); long broken curve (circle), present result. case:
a = −0.5× 10−3.
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